КПД двигателя внутреннего сгорания – познаем эффективность в сравнении

Решение примеров

Задача 1. Поезд на скорости 54 км/ч развивает мощность 720 кВт. Нужно вычислить силу тяги силовых агрегатов. Решение: чтобы найти мощность, используется формула N=F x v. Если перевести скорость в единицу СИ, получится 15 м/с. Подставив данные в уравнение, определяется, что F равно 48 kН.

Задача 2. Масса транспортного средства соответствует 2200 кг. Машина, поднимаясь в гору под уклоном в 0,018, проходит расстояние 100 м. Скорость развивается до 32,4 км/ч, а коэффициент трения соответствует 0,04. Нужно определить среднюю мощность авто при движении. Решение: вычисляется средняя скорость — v/2. Чтобы определить силу тяги мотора, выполняется рисунок, на котором отображаются силы, воздействующие на машину:

  • тяжесть — mg;
  • реакция опоры — N;
  • трение — Ftr;
  • тяга — F.

Первая величина вычисляется по второму закону Ньютона: mg+N+Ftr+F=ma. Для ускорения используется уравнение a=v2/2S. Если подставить последние значение и воспользоваться cos, получится средняя мощность. Так как ускорение считается постоянной величиной и равно 9,8 м/с2, поэтому v= 9 м/с. Подставив данные в первую формулу, получится: N= 9,5 kBt.

При решении сложных задач по физике рекомендуется проверить соответствие предоставленных в условиях единиц измерения с международными стандартами. Если они отличаются, необходимости перевести данные с учётом СИ.

КПД двигателя внутреннего сгорания – что это такое?

В первую очередь, мотор преобразует тепловую энергию, возникающую при сгорании топлива, в определенное количество механической работы. В отличие от паровых машин, эти двигатели более легкие и компактные. Они гораздо экономичнее и потребляют строго определенное жидкое и газообразное топливо. Таким образом, КПД современных двигателей рассчитывается на основании их технических характеристик и прочих показателей.

КПД (коэффициент полезного действия) представляет собой отношение фактически передаваемой мощности на вал двигателя к мощности, получаемой поршнем за счет действия газов . Если провести сравнение КПД двигателей различной мощности, то можно установить, что это значение для каждого из них имеет свои особенности.

Оба двигателя, несмотря на схожесть конструкции, имеют различные виды смесеобразования. Поэтому поршни карбюраторного мотора работают при более высоких температурах, требующих качественного охлаждения. Из-за этого тепловая энергия, которая могла бы превратиться в механическую, рассеивается без всякой пользы, понижая общее значение КПД.

Тем не менее, для того чтобы повысить КПД бензинового двигателя, принимаются определенные меры. Например, на один цилиндр могут устанавливаться два впускных и выпускных клапана, вместо конструкции, когда размещается один впускной и один выпускной клапан. Кроме того, в некоторых двигателях на каждую свечу устанавливается отдельная катушка зажигания. Управление дроссельной заслонкой во многих случаях осуществляется с помощью электропривода, а не обыкновенным тросиком.

Коэффициент полезного действия: дизель или бензин?

Сравнивая коэффициент полезного действия бензинового и дизельного силового агрегата, о низкой эффективности первого стоит сказать сразу. КПД бензинового мотора составляет всего 25 — 30 %. Если речь идет о дизельном аналоге, показатель в данном случае составляет 40 %. О 50 % может идти речь при установленном турбокомпрессоре. КПД на уровне 55 % допустим при условии использования на дизельном ДВС современной системы топливного впрыска в сочетании с турбиной (читайте о том, как работает турбина).

Несмотря на то, что силовые установки конструктивно похожи, разница в производительности существенная, на что влияет принцип образования рабочей топливно-воздушной смеси и дальнейшая реализация воспламенения заряда. Также существенным фактором является вид используемого топлива. Оборотистость бензиновых силовых агрегатов более высока, если сравнивать с дизельными вариантами, но потери намного больше, поскольку полезная энергия расходуется на тепло. Как итог, эффективность преобразования энергии бензина в механическую работу намного ниже, а большая её часть просто рассеивается в атмосфере.

Крутящий момент и мощность

Если взять как основу одинаковый показатель рабочего объёма, мощность бензинового двигателя превосходит дизельный, но для её достижения обороты должны быть более высокими. Вместе с увеличением оборотов возрастают и потери, расход топлива повышается. Сам крутящий момент также не стоит упускать из виду, поскольку это сила, передающаяся на колёса от мотора, именно она и заставляет автомобиль двигаться. Таким образом, максимальный показатель крутящего момента бензиновыми двигателями достигается на более высоких оборотах.

За счёт чего происходит увеличение мощности двигателя? Читайте об этом подробнее в любопытном материале нашего эксперта.

Дизельный двигатель с аналогичными показателями способен на низких оборотах достичь максимума крутящего момента, а для реализации полезной работы расходуется меньше солярки. Следовательно, КПД дизельного двигателя выше, а топливо расходуется более экономно.

Если сравнивать с бензином, то солярка образует тепло в большей степени при более высокой температуре сгорания топлива. Также наблюдается более высокий параметр детонационной стойкости.

Эффективность бензина и солярки

Находящиеся в составе дизельного топлива углеводороды более тяжёлые, чем бензиновые. Во многом меньший коэффициент полезного действия бензинового мотора обусловлен особенностями сгорания бензинового топлива и его энергетической составляющей. Преобразование тепла в полезную механическую энергию в дизельном двигателе происходит более полноценно, следовательно, сжигание одинакового количества топлива за единицу времени позволяет дизелю выполнить больше работы.

Не стоит также упускать из виду создание необходимых для полного сгорания смеси условий и особенности впрыска. Подача топлива в дизельных моторах происходит отдельно от воздуха, поскольку впрыскивание осуществляется непосредственно в цилиндр на завершающем этапе такта сжатия, а не во впускной коллектор. Как итог, удаётся достичь более высокой температуры, а сгорание каждой порции топлива происходит максимально полноценно.

Постоянные магниты как источники энергии для двигателей

Второй интересный источник — постоянный магнит, который ниоткуда не получает энергию, а магнитное поле не расходуется даже при совершении работы. Например, если магнит что-либо притянет к себе, то он выполнит работу, а его магнитное поле слабее не станет. Это свойство уже не раз пытались использовать для создания так называемого вечного двигателя, но пока что ничего более-менее нормального из этого не получилось. Любой механизм износится рано или поздно, но сам источник, которым является постоянный магнит, практически вечен.

Впрочем, есть специалисты, которые утверждают, что со временем постоянные магниты теряют свои силы в результате старения. Это неправда, но даже если бы и было правдой, то вернуть его к жизни можно было бы всего лишь одним электромагнитным импульсом. Двигатель, который бы требовал перезарядку раз в 10-20 лет, хоть и не может претендовать на роль вечного, но очень близко к этому подходит.

Уже было много попыток создать вечный двигатель на базе постоянных магнитов. Пока что не было удачных решений, к сожалению. Но учитывая тот факт, что спрос на такие двигатели есть (его просто не может не быть), вполне возможно, что в скором будущем мы увидим что-то, что очень близко подойдет к модели вечного мотора, который будет работать на возобновляемой энергии.

У какого двигателя самый большой КПД?

Теперь хочу поговорить о бензиновом и дизельном вариантах, и выяснить кто же из них наиболее эффективный.

Если сказать простыми, языком и не лезть в дебри технических терминов то – если сравнить два КПД бензинового и дизельного агрегатов – эффективнее из них, конечно же дизель и вот почему:

1) Бензиновый двигатель преобразует только 25 % энергии в механическую, а вот дизельный около 40%.

2) Если оснастить дизельный тип турбонаддувом, то можно достигнуть КПД в 50-53%, а это очень существенно.

Так почему он так эффективен? Все просто — не смотря на схожей тип работы (и тот и другой являются агрегатами внутреннего сгорания) дизель выполняет свою работу намного эффективнее. У него большее сжатие, да и топливо воспламеняется от другого принципа. Он меньше нагревается, а значит происходит экономия на охлаждении, у него меньше клапанов (экономия на трении), также у него нет, привычных нам, катушек зажигания и свечей, а значит не требуется дополнительные энергетические затраты от генератора. Работает он с меньшими оборотами, не нужно бешено раскручивать коленвал — все это делает дизельный вариант чемпионом по КПД.

Кислород

Воздух состоит примерно на 21% кислорода . Если кислорода для правильного сгорания недостаточно , топливо не сгорит полностью и будет производить меньше энергии. Чрезмерно высокое соотношение топлива и воздуха приведет к увеличению количества несгоревших углеводородных загрязняющих веществ в двигателе. Если весь кислород израсходован из-за слишком большого количества топлива, мощность двигателя снижается.

Поскольку температура сгорания имеет тенденцию к увеличению с более бедными топливно-воздушными смесями, несгоревшие углеводородные загрязнители должны быть сбалансированы с более высокими уровнями загрязняющих веществ, таких как оксиды азота ( NOx ), которые образуются при более высоких температурах сгорания. Иногда это смягчается введением топлива перед камерой сгорания для охлаждения поступающего воздуха за счет испарительного охлаждения. Это может увеличить общий заряд, поступающий в цилиндр (поскольку более холодный воздух будет более плотным), что приведет к увеличению мощности, но также и к более высоким уровням углеводородных загрязнителей и более низким уровням загрязнителей оксидами азота. При прямом впрыске этот эффект не столь драматичен, но он может охладить камеру сгорания до уровня, достаточного для уменьшения количества некоторых загрязняющих веществ, таких как оксиды азота (NOx), и повышения других, таких как частично разложенные углеводороды.

Топливно-воздушная смесь втягивается в двигатель, потому что движение поршней вниз создает частичный вакуум. Компрессора может быть дополнительно использован , чтобы заставить больший заряд (принудительная индукцию) в цилиндр , чтобы производить больше энергии. Компрессор имеет либо наддув с механическим приводом, либо турбонаддув с приводом от выхлопа . В любом случае принудительный впуск увеличивает давление воздуха за пределами впускного отверстия цилиндра.

Есть и другие методы увеличения количества кислорода, доступного внутри двигателя; один из них – введение закиси азота (N 2 O) в смесь, а в некоторых двигателях используется нитрометан , топливо, которое обеспечивает сам кислород, необходимый для сжигания. Из-за этого смесь могла состоять из 1 части топлива и 3 частей воздуха; таким образом, можно сжигать больше топлива внутри двигателя и получать более высокую выходную мощность.

Базовые компоненты ESTEC

Бензиновый двигатель Газель Некст 2.7 л. устройство ГРМ, технические характеристики Evotech 2.7

Основными конструктивными особенностями ESTEC являются цикл Аткинсона, геометрическая степень сжатия 13,5:1 и система EGR с жидкостным охлаждением (обычный 1NR-FE имеет степень сжатия 11,5:1 и внутреннюю рециркуляцию выхлопных газов). Система бесступенчатого регулирования фаз VVT-iE с электроприводом является ключевым элементом в реализации цикла Аткинсона. Она позволяет быстро и с высокой точностью регулировать подъем впускных клапанов и избежать затруднений, возникающих из-за разницы температуры и давления масла при холодном пуске и на прогретом моторе.

В системе рециркуляции выхлопных газов используется эффективный охладитель и быстродействующий клапан. Кроме того, впускной трубопровод, охладитель и клапан непосредственно соединены между собой для уменьшения образования конденсата от охладителя.

Оптимизированная форма впускных каналов обеспечивает быстрое наполнение цилиндров, а создаваемое завихрение способствует улучшенному сгоранию смеси. Чтобы удовлетворить требованиям, как к производительности, так и к расходу топлива, выпускной коллектор выполнен по схеме 4-2-1. Это позволяет уменьшить количество остаточных газов в цилиндрах двигателя.

Восстановление производительности

Увеличение степени сжатия до 13,5:1 снизило крутящий момент со 104 Нм до 96 Нм. Чтобы восполнить эту потерю, Toyota применила выпускной коллектор измененной формы, уменьшающий количество остаточных газов и температуру в цилиндре; новую водяную рубашку, поддерживающую оптимальную температуру поверхности цилиндров; оптимизацию времени впрыска. Комбинация этих мер (из которых главную роль играет измененный выпускной коллектор) позволила повысить крутящий момент до 105 Нм.

При малых нагрузках из-за работы охлаждаемой EGR происходят чрезмерные колебания крутящего момента. Для устранения этого недостатка используются система регулирования выпускных клапанов (Exhaust VVT) и внутренняя рециркуляция выхлопных газов. При средних и больших нагрузках работа Exhaust VVT приостанавливается, а шаг клапана системы EGR увеличивается.

Охлаждение является эффективной мерой против снижения крутящего момента у двигателей с высокой степенью сжатия. Однако одновременно это приводит к увеличению расхода топлива из-за повышения трения и потерь на охлаждение. В обычных моторах верхняя часть цилиндра нагревается больше, чем нижняя. Из-за неравномерного нагрева увеличивается трение в цилиндре. В ESTEC новая водяная рубашка со специальной прокладкой выравнивает температуру в разных частях поверхности цилиндра, снижая потери на трение и возможность возникновения детонации.

Цикл Аткинсона

Цикл Аткинсона

В двигателе, работающем по циклу Аткинсона, на такте впуска впускной клапан закрывается не вблизи НМТ, а значительно позже. Это дает целый ряд преимуществ.

Во-первых, снижаются насосные потери, т. к. часть смеси, когда поршень прошел НМТ и начал движение вверх, выталкивается назад во впускной коллектор (и используется затем в другом цилиндре), что снижает в нем разрежение. Горючая смесь, выталкиваемая из цилиндра, также уносит с собой часть тепла с его стенок.

Так как длительность такта сжатия по отношению к такту рабочего хода уменьшается, то двигатель работает, по так называемому, циклу с увеличенной степенью расширения, при котором энергия отработанных газов используется более длительное время, т. е., с уменьшением потерь выпуска. Таким образом,получаем лучшие экологические показатели, экономичность и больший КПД, но меньшую мощность.

Подробнее о потерях

Если сравнивать бензиновый и дизельный и ДВС, можно сказать что КПД бензинового мотора находится на более низком уровне – в пределах 20-25 %. Это обусловлено рядом причин. Если, к примеру, взять поступающее в ДВС топливо и «перевести» его в проценты, то получится как бы «100% энергии», которая передается мотору, а дальше, потери КПД:

  1. Топливная эффективность. Далеко не все потребляемое топливо сгорает, его большая часть уходит с отработанными газами. Потери на этом уровне составляют до 25% КПД. Сегодня, конечно, топливные системы усовершенствуются, появился инжектор, но и это не решает проблему на 100%.
  2. Второе – это тепловые потери. Часть тепла уходит из ДВС с выхлопными газами, кроме этого, мотор прогревает себя и ряд других элементов: свой корпус, жидкость в ДВС, радиатор. На все это приходится еще в пределах 35%.
  3. Третье, на что расходуется КПД – это механические потери. К ним относятся составляющие силового агрегата, где есть трение: шатуны, кольца, всякого рода поршни и т.д. Также сюда можно отнести потери, обусловленные нагрузкой от генератора, к примеру, чем больше электричества он вырабатывает, тем сильнее он притормаживает вращение коленвала. Конечно, различные смазки для ДВС играют свою роль, но все-таки полностью проблему трения они не решают, а это еще дополнительные потери до 20 % КПД.

Таким образом, в остатке КПД не более 20%. Сегодня существует бензиновые варианты, у которых показатель КПД несколько увеличен – до 25%, но, к сожалению, их не так много. К примеру, если автомобиль расходует 10 л топлива на 100 км, то всего лишь 2 л уйдут на работу двигателя, а все остальные – это потери.

Конечно, есть вариант увеличить мощность за счет расточки головки, но к нему прибегают довольно редко, поскольку это вносит определенные изменения в конструкцию ДВС.

Конструкторы постоянно стремятся увеличить КПД как бензинового, так и дизельного агрегатов. Увеличение количества выпускных/впускных клапанов, управление топливным впрыском (электронное), дроссельная заслонка, активное использование систем изменения фаз газораспределения и другие эффективные решения позволяют значительно повысить КПД. Конечно, в большей степени это относится к дизельным установкам.

С помощью таких усовершенствований современный дизель способен практически полностью сжечь дизтопливо в цилиндре, выдав максимальный показатель крутящего момента. Именно низкие обороты означают незначительные потери во время трения и возникающее в результате этого сопротивление. По этой причине дизельный двигатель является одним из производительных и экономичных, КПД которого довольно часто превышает отметку в 50%.

Где теряется эффективность

Забегая вперёд можно констатировать, что для бензиновых двигателей КПД равен примерно 25 процентам. Почему так мало, и чем обусловлены такие цифры? Причины здесь в потерях: если взять некое количество топлива, и обозначить его ста процентами чистой энергии, передающейся мотору, то можно проследить все потери.

  • Для начала следует разобрать топливную эффективность. Все мы в курсе, что топливо сгорает не полностью, и некоторая его часть просто выходит в виде отработанных газов и вместе с ними. А это уже потеря примерно четверти эффективности, то есть – минус 25%. Даже инжектор и другие современные системы не решают этого вопроса, хоть и стали очень эффективными.
  • Далее идут тепловые потери. Мотор греет себя, воздух, другие элементы и узлы, к примеру, радиатор, охлаждающую жидкость, свой корпус, а также выхлоп. В этом месте эффективность теряет ещё около 35%.
  • Немало процентов забирают механические потери. Это поршни, шестерни, кольца, подшипники и прочие элементы и узлы, где присутствует трение. Сюда же относим и нагрузки генератора, который при выработке электроэнергии заметно тормозит коленвал. Несмотря на то, что смазочные материалы стали гораздо эффективнее, вынь да положь ещё двадцать процентов потерь.

И что у нас остаётся в остатке? А всего 20%! Понятно, что это средний показатель, и бензиновые двигатели бывают более эффективными, но насколько – может ещё пять-семь процентов, не больше. Да и двигателей таких совсем немного. Итого из залитых десяти литров топлива, что автомобиль съедает на сто километров пробега, на полезную работу уходить всего два с половиной литра, а остальные семь-восемь литров попросту уходят в потери.

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело — ещё больше нагревалось.

Рис. 3. Холодильная машина

Ключевое слово здесь — «самопроизвольно». Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильныемашины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3).

Рабочее тело холодильной машины называют также хладагентом. Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты , в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту  более нагретому телу — нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы , совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину :

Таким образом, на -диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла — это работа , совершаемая внешним источником (рис. 4).

Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины — охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда — в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение — нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда — холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

Степень сжатия

Эффективность двигателей внутреннего сгорания зависит от нескольких факторов, наиболее важным из которых является степень расширения. Для любого теплового двигателя работа, которую можно извлечь из него, пропорциональна разнице между начальным давлением и конечным давлением во время фазы расширения. Следовательно, повышение начального давления является эффективным способом увеличения извлекаемой работы (уменьшение конечного давления, как это делается в паровых турбинах путем выпуска в вакуум, также эффективно).

Степень расширения (рассчитанная исключительно из геометрии механических частей) типичного бензина (бензин) составляет 10: 1 ( топливо премиум-класса ) или 9: 1 (обычное топливо), при этом некоторые двигатели достигают отношения 12: 1 или более. . Чем больше степень расширения, тем более эффективен двигатель в принципе, и более высокий коэффициент сжатия / расширения в принципе требуется бензин с более высоким октановым числом , хотя этот упрощенный анализ осложняется разницей между фактической и геометрической степенями сжатия. Высокое октановое число подавляет тенденцию топлива почти мгновенно сгорать (известную как детонация или детонация ) в условиях высокого сжатия / высокой температуры. Однако в двигателях, в которых используется сжатие, а не искровое зажигание за счет очень высоких степеней сжатия (14-25: 1), таких как дизельный двигатель или двигатель Бурка , высокооктановое топливо не требуется. Фактически, для этих целей предпочтительны топлива с более низким октановым числом, обычно оцениваемые по цетановому числу , поскольку они легче воспламеняются при сжатии.

В условиях частичного открытия дроссельной заслонки (т. Е. Когда дроссельная заслонка не полностью открыта) эффективная степень сжатия меньше, чем при работе двигателя на полностью открытой дроссельной заслонке, из-за того простого факта, что поступающая топливно-воздушная смесь ограничена и не может заполниться. камеру до полного атмосферного давления. КПД двигателя ниже, чем при работе двигателя на полностью открытой дроссельной заслонке. Одним из решений этой проблемы является перенос нагрузки в многоцилиндровом двигателе с некоторых цилиндров (путем их деактивации) на остальные цилиндры, чтобы они могли работать при более высоких индивидуальных нагрузках и, соответственно, с более высокими эффективными степенями сжатия. Этот метод известен как переменное смещение .

Большинство бензиновых (бензиновый, цикл Отто ) и дизельных ( дизельный цикл ) двигателей имеют степень расширения, равную степени сжатия . Некоторые двигатели, в которых используется цикл Аткинсона или цикл Миллера, достигают повышенной эффективности за счет степени расширения, превышающей степень сжатия.

Дизельные двигатели имеют степень сжатия / расширения от 14: 1 до 25: 1. В этом случае общее правило более высокого КПД от более высокого сжатия не применяется, потому что дизели с коэффициентом сжатия более 20: 1 являются дизелями с косвенным впрыском (в отличие от прямого впрыска). В них используется форкамера, чтобы сделать возможной работу на высоких оборотах, необходимую в легковых / легковых автомобилях и легких грузовиках. Тепловые и газодинамические потери в форкамере приводят к тому, что дизели с прямым впрыском (несмотря на их более низкую степень сжатия / расширения) более эффективны.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий