Аэродинамика автомобиля: советы по выбору аэродеталей

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Негативным фактором от воздействия такой силы является ухудшение устойчивости авто при увеличении скорости и повышение вероятности ухода в занос.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная — повышается. Установка заднего спойлера действует таким же образом.

Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением — чем хуже аэродинамика, тем выше расход топлива.

Прижимная и подъемная силы

Вот еще один нюанс, который влияет на управляемость транспорта. В некоторых случаях лобовое сопротивление не удается снизить до минимума. Пример тому – болиды F1. Хотя их кузов идеально обтекаемый, колеса в них открыты. Эта зона создает больше всего проблем для производителей. У такого транспорта Сх находится в пределах от 1,0 до 0,75.

Если задний вихрь в этом случае не удастся устранить, то потоком можно воспользоваться, чтобы увеличить сцепление с треком. Для этого на кузов устанавливают дополнительные детали, которые создают прижимную силу

Например, передний бампер оснащают спойлером, который препятствует отрыву от земли, что крайне важно для спорткара. Подобное антикрыло закрепляется и на задней части болида

Переднее антикрыло направляет поток не под машину, а на верхнюю часть кузова. Из-за этого нос транспорта всегда направляется в сторону дороги. Снизу образуется вакуум, и машина будто прилипает к трассе. Задний спойлер препятствует образованию вихря позади авто – деталь срывает поток, прежде чем он начнет всасываться в зону разрежения за транспортом.

На уменьшение лобового сопротивления также влияют мелкие элементы. Например, кромка капота практически всех современных автомобилей закрывает щетки дворников

Так как передняя часть машины больше всего сталкивается со встречным потоком, то внимание уделяется даже таким мелким элементам, как дефлекторы воздухозаборников

Устанавливая спортивные обвесы, нужно учесть, что дополнительная прижимная сила делает машину более уверенной на дороге, но при этом направленный поток увеличивает лобовое сопротивление. Из-за этого пиковая скорость такого транспорта будет ниже, чем без аэродинамических элементов. Еще один отрицательный эффект – автомобиль становится более прожорливым. Правда, эффект от спортивного комплекта обвесов будет ощущаться при скорости от 120 километров в час, поэтому в большинстве ситуаций на дорогах общественного пользования такие детали .

Прижимная сила


При движении автомобиля поток воздуха под его днищем идет по прямой, а верхняя часть потока огибает кузов, то есть, проходит больший путь. Поэтому скорость верхнего потока выше, чем нижнего. А согласно законам физики, чем выше скорость воздуха, тем ниже давление. Следовательно, под днищем создается область повышенного давления, а сверху – пониженного. Таким образом создается подъемная сила. И хотя ее величина невелика, неприятность состоит в том, что она неравномерно распределяется по осям. Если переднюю ось подгружает поток, давящий на капот и лобовое стекло, то заднюю дополнительно разгружает зона разряжения, образующаяся за автомобилем. Поэтому с ростом скорости снижается устойчивость и автомобиль становится склонен к заносу.

Каких-либо специальных мер для борьбы с этим явлением конструкторам обычных серийных автомобилей выдумывать не приходится, так как то, что делается для улучшения обтекаемости, одновременно увеличивает прижимную силу. Например, оптимизация задней части уменьшает зону разряжения за автомобилем, а значит и снижает подъемную силу. Выравнивание днища не только уменьшает сопротивление движению воздуха, но и повышает скорость потока и, следовательно, снижает давление под автомобилем. А это, в свою очередь, приводит к уменьшению подъемной силы. Точно так же две задачи выполняет и задний спойлер. Он не только уменьшает вихреобразование, улучшая Сх, но и одновременно прижимает автомобиль к дороге за счет отталкивающегося от него потока воздуха. Иногда задний спойлер предназначают исключительно для увеличения прижимной силы. В этом случае он имеет большие размеры и наклон или делается выдвижным, вступая в работу только на высоких скоростях.


Для спортивных и гоночных моделей описанные меры будут, естественно, малоэффективны. Чтобы удержать их на дороге, нужно создать большую прижимную силу. Для этого применяются большой передний спойлер, обвесы порогов и антикрылья. А вот установленные на серийных автомобилях, эти элементы будут играть только лишь декоративную роль, теша самолюбие владельца. Никакой практической выгоды они не дадут, а наоборот, увеличат сопротивление движению. Многие автолюбители, кстати, путают спойлер с антикрылом, хотя различить их довольно просто. Спойлер всегда прижат к кузову, составляя с ним единое целое. Антикрыло же устанавливается на некотором расстоянии от кузова.

Зачем автомобилю нужно антикрыло?

Антикрыло можно легко спутать со спойлером. Однако их необходимо отличать, так как, несмотря на некоторую схожесть, они выполняют разные функции; являются разными по своей сути приспособлениями. Функция спойлера – это изменение направления воздушного потока. Спойлеры используются для повышения устойчивости машины в продольном направлении; они имеют довольно непростую форму, но, несмотря на это, плотно примыкают к кузову автомобиля.

Несмотря на все, антикрыло не может гарантировать полную защиту машины от опрокидывания и аварии. Если передняя часть корпуса наклоняется, то может возникнуть неприятность. Если автомобиль будет ехать на высокой скорости и попадет в яму на дороге, то передняя часть поднимется быстрее, чем задняя, подъемная сила увеличится, и машина перевернется. Известны случаи, когда крыло не спасало автомобиль, который двигался с завышенной скоростью. Более того, оно может даже поспособствовать аварии.

Еще одним важнейшим компонентом аэродинамики машины является низкий задний бампер. Его, однако, не рекомендуется устанавливать близко к земле, так как под машиной может накопиться воздушное пространство.

В аэродинамический «комплект» входит также ряд следующих элементов: арки колес, облицовка радиатора, зеркала специальной формы, пороги и т. д. Каждая перечисленная деталь, помимо эстетической составляющей, совершенствует автомобиль в его главной функции – движении на скорости.

Зачем нужны спойлеры

Если уж мы никуда не можем деться от воздуха и его капризов, то стоит попробовать обратить его способности во благо. Так думали автомобилестроители раньше и продолжают думать сейчас. Главными новаторами и идейными вдохновителями как всегда являются спортивные подразделения автомобильных концернов. Там и с формой днища изощряются, и специальные обвесы изготавливают, и выхлопную системы в технике кружев Ришелье изобретают. Но все эти эффективные инновации вместить в одну серийную гражданскую машину не получится — больно уж дорого и сложно. Приходится выбирать самый простой, надёжный и действенный способ скорректировать поведение машины в воздушном потоке. И если лобовое сопротивление и повышенные шумы можно побороть только полной перестройкой кузова, то со «взлётами» бороться можно иначе. Для этого подойдут передние сплиттеры и задние антикрылья (спойлеры). Сплиттер помогает уменьшить дорожный просвет и буквально отсечь часть воздуха, попадающего под машину на скорости. Это помогает снизить подъёмную силу.

Спойлер же сглаживает поток воздуха, срывающийся с крыши и заднего стекла автомобиля. Но помимо «спрямления» потока, правильно подобранное антикрыло преобразует сопротивление воздуха в прижимную силу. Получается, что воздух встречается с поверхностью антикрыла под таким углом, что часть силы сопротивления направлена в сторону дорожного полотна. Благодаря жёсткому креплению спойлера к кузову, задней части автомобиля не остаётся ничего, кроме как прижаться к земле под воздействием потока воздуха. Это помогает сохранить управляемость, а на заднем приводе ещё и помогает реализовать мощность на ведущих колёсах. Кстати, передние антикрылья тоже есть, но только в мире профессионального автоспорта.

Как видите, аэродинамика — вещь сложная. И подружиться с ней бывает непросто, даже имея почти безграничные ресурсы. Ведь даже крошечная ошибка в расчётах может привести к эффекту, который будет строго противоположен ожидаемому. Да, есть талантливые механики, которые могут преобразить автомобиль, приладив буквально пару планочек, но, по большей части, все незаводские навесные элементы скорее облагораживают внешность машины, а не её повадки. Давайте будем честными: все же мы любим глазами, а все атрибуты настоящего спорткара уж точно заставят проводить их обладателя взглядом.

21.05.2020

18.10.2019

08.11.2019

19.12.2019

01.10.2021

01.04.2019

04.07.2019

05.02.2018

26.02.2019

22.10.2020

11.06.2020

18.07.2016


Звезды за рулем

Макsим: «Всегда знаю, где газ, но плохо знаю, где тормоз»

Никита Нагорный: «Мне нравится вести машину боком»

Что такое аэродинамика автомобиля

Как бы странно это ни звучало, чем с большей скоростью автомобиль движется по дороге, тем сильнее он будет стремиться оторваться от земли. Причина в том, что поток воздуха, с которым сталкивается транспортное средство, разрезается кузовом авто на две части. Одна проходит между днищем и дорожным покрытием, а вторая – над крышей, и огибает контур машины.

Если посмотреть на кузов автомобиля сбоку, то визуально он будет отдаленно напоминать крыло самолета. Особенность этого элемента летательного аппарата заключается в том, что воздушный поток над изгибом проходит больше пути, чем под прямой частью детали. Из-за этого над крылом создается разряжение, или вакуум. С увеличением скорости эта сила сильнее приподнимает корпус.

Подобный подъемный эффект создается и у автомобиля. Верхний поток огибает капот, крышу и багажник, а нижний – только днище. Еще один элемент, который создает дополнительное сопротивление, это приближенные к вертикали детали кузова (радиаторная решетка или лобовое стекло).

Скорость транспорта напрямую влияет на подъемный эффект. Причем форма кузова с вертикальными панелями создает дополнительное завихрение, которое снижает сцепление транспорта с дорогой. По этой причине владельцы многих классических автомобилей с угловатыми формами при тюнинге обязательно крепят к кузову спойлер и другие элементы, позволяющие увеличивать прижимную силу машины.

Аэродинамическое сопротивление автомобиля

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели. При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

В воздухе – КамАЗ-4325

За пределами Московской области на больших стоянках дальнобойщиков уже давно стали появляться магазины, где продают всевозможные кабинные обтекатели. Каких конструкций там только не увидишь! И маленькие «газельи» козырьки, и огромные стеклопластиковые изделия для тяжелых машин – в основном для отечественных, поскольку у импортных автомобилей элементы аэродинамического обвеса, как правило, входят в базовую комплектацию.

Некоторые наши водители поступают оригинально. Вместо «фирменных» обтекателей устанавливают на крыши кабин, например, капоты от легковушек или ветровые стекла. Разумеется, такой «самопальный» тюнинг вряд ли скажется на топливной экономичности, разве что расход горючего упадет в водительских байках самих «тюнингеров».

Нас же интересует только истина, и мы решили проверить в действии работу «настоящего» обтекателя на реальном грузовике. А помог нам хозяин бортового КамАЗ-4325 (4х2) Кирилл Порошин. Нашим постоянным читателям должен быть знаком этот автомобиль. На всякий случай напомним, что от исходного конвейерного варианта в нем не осталось и следа. Кирилл его полностью переделал, начиная с двигателя и заканчивая ходовой. Кабину он тоже тюнинговал, а также приобрел и установил на нее обтекатель. Сразу оговоримся: его реальную работу в аэродинамической трубе никто не проверял, и мы не знаем, какими специалистами по аэродинамике были создатели этой детали.

Итак, Кирилл оснастил КамАЗ обтекателем, а мы проверили, что это дало на практике в реальных условиях эксплуатации – правда, на испытательных дорогах автополигона ФГУП НИЦИАМТ.

Мы установили на КамАЗ-4325 расходомер и… задумались: в каком весовом состоянии проводить замеры – с полной массой или в снаряженном состоянии? Решили не загружать машину балластом и испытывать без груза. Ведь нас интересовали не расходы топлива груженого КамАЗа, а то, какие результаты покажет конкретный автомобиль в конкретных условиях с установленным и демонтированным аэродинамическим элементом.

И каковы же результаты «полетов» по динамометрической дороге? Да, именно «полетов», поскольку тестируемый КамАЗ с обтекателем на крыше развивал максимальную скорость 110,1 км/ч. Без обтекателя грузовик с тентом терял на «максималке» 0,3 км/ч, отказываясь разгоняться быстрее 109,8 км/ч. Не впечатляет, не правда ли?

А вот результаты замеров расходов топлива получились более интересными. Например, на установившейся скорости 90 км/ч без обтекателя грузовик расходует 34,6 л/100 км, а с обтекателем – 31,2 л/100 км. Таким образом, с обтекателем расход уменьшился на 3,4 л, а это целых 9,8%. Правда, на постоянной скорости 60 км/ч разница в расходе топлива стала чуть меньше – 2 л/100 км, то есть 9,0% экономии.

Но это была, если хотите, «чистая наука». Все понимают, что в реальных условиях на трассе автомобиль не едет с одной скоростью. Он то разгоняется, то замедляет движение, поэтому самым интересным для нас стали испытания в магистральном ездовом цикле (МЕЦ). Как оказалось, наш подопытный при почти одинаковой средней скорости расходует без обтекателя 28,3 л/100 км, а с обтекателем – 26,9 л/100 км, т. е. экономия составила 1,4 л, или 4,9%.

А теперь представьте себе, что наш КамАЗ едет не по полигону, а порожним направляется из Москвы в Санкт-Петербург за грузом. Расстояние 750 км, ситуация более чем типичная. Немного арифметики и… получается, что при средней скорости 58,3…58,4 км/ч грузовик Кирилла Порошина сэкономит 10,5 л.

Кто-то скажет, что это мизерная экономия. Один литр дизельного топлива стоит примерно 17 руб., следовательно, в денежном эквиваленте Кирилл на своем КамАЗе сэкономит 178,5 руб. Хватит разве что на полный обед в придорожном кафе. Но это только поездка в одну сторону. А сколько можно сделать рейсов в Санкт-Петербург, скажем, за полтора месяца, учитывая постоянную загруженность автомобиля? Получается (опять же из практики Кирилла) 12 рейсов: два рейса за неделю с погрузкой и разгрузкой. Сумма экономии на топливе составит уже 4284 руб. За год – 51 408 руб. – почти $2000, и это только на питерской трассе. А если плечи будут за 1000 км? Какая будет экономия, подсчитать нетрудно. Вот и делайте выводы. Напомним лишь, что все изложенные факты справедливы по отношению к данному КамАЗу с конкретным обтекателем.

Аэродинамические мероприятия

При решении названных задач по формированию внешнего обтекания и внутренних потоков необходимо учитывать специфические особенности автомобиля

Если, например, при решении вопросов аэродинамики гоночного автомобиля формулы 1 на первом месте стоит проблема получения прижимающей силы, то для обычного легкового автомобиля основное внимание уделяется силе сопротивления воздуха. Для скоростного микроавтобуса или фургона актуальной может стать проблема уменьшения чувствительности к боковому ветру

Тип автомобиля определяет также и пути решения поставленных аэродинамических задач. Так, для гоночных автомобилей главная цель — улучшение силового замыкания между колесами и полотном дороги за счет прижимающей аэродинамической силы — достигается независимо от формы автомобиля. Крыловидные профили спереди и сзади стали составной частью внешнего вида современных гоночных автомобилей.

Стремясь уменьшить аэродинамическое сопротивление обычного легкового автомобиля, пользуются внешне незаметными средствами или пытаются приспособить аэродинамические мероприятия к изменяющемуся восприятию стиля.

Основные действующие силы

Если вспомнить законы физики, то можно констатировать – во время движения на машину действует две основные силы – прижимная и подъемная.

При этом многое зависит от формы объекта, сталкиваясь с которым воздух поднимается или опускается к земле.

Сегодня есть множество моделей машин, у которых из-за неправильной формы кузова проявляется дополнительная подъемная сила. Последняя всеми силами пытается оторвать переднюю часть от земли. И чем выше скорость движение, тем мощнее данная сила.

Когда автомобиль сталкивается с потоком воздуха, у последнего есть всего два пути – уйти вверх или отправиться под днище транспортного средства.

Самое интересное, что во время езды давление воздуха под авто зачастую гораздо выше, чем над ним. Здесь проявляется так называемый «эффект Бернулли».

Молекулы воздуха быстрее перемещаются над верхним кузовом авто, поэтому там давление ниже. Под машиной плотность воздуха много больше, поэтому выше и давление.

Какой можно сделать вывод? На большой скорости потоки воздуха стараются оторвать переднюю часть от земли, но этому явлению сопротивляется сила тяжести.

Основные факты аэродинамики

Откуда берется это сопротивление? Все очень просто. Вокруг нашей планеты имеется атмосфера, состоящая из газовых соединений. В среднем плотность твердых слоев атмосферы (пространство от земли и до высоты птичьего полета) составляет около 1,2кг/квадратный метр. Когда предмет находится в движении, он сталкивается с молекулами газов, входящих в состав воздуха. Чем выше скорость, тем с большей силой эти элементы будут ударяться о предмет. По этой причине, входя в земную атмосферу, космический аппарат начинает сильно нагреваться от силы трения.

Самая первая задача, с которой пытаются справиться разработчики нового дизайна модели, это как снизить лобовое сопротивление. Этот параметр увеличивается в 4 раза, если транспорт ускорится в пределах от 60км/ч до 120км/ч. Чтобы понять, насколько это существенная величина, рассмотрим небольшой пример.

Вес транспорта составляет 2 тысячи кг. Транспорт разгоняется до 36 км/ч. При этом затрачивается всего 600 Ватт мощности на преодоление этой силы. Все остальное тратится на разгон. Но уже на скорости в 108 км/ч. на преодоление фронтального сопротивления уже используется 16 кВт мощности. При движении на скорости в 250км/ч. автомобиль тратит уже целых 180 лошадиных сил на силу сопротивления. Если водитель захочет разогнать авто еще сильнее, до 300 километров/час, помимо мощности для увеличения скорости мотору нужно будет расходовать уже 310 лошадей, чтобы справиться с фронтальным потоком воздуха. Вот зачем спортивному автомобилю требуется настолько мощный силовой агрегат.

Чтобы разработать максимально обтекаемый, но вместе с тем и достаточно комфортный транспорт, инженеры рассчитывают коэффициент Сх. Этот параметр в описании модели является самым важным, что касается идеальной формы кузова. Идеальной величиной в этой области обладает капля воды. У нее этот коэффициент составляет 0,04. Ни один автопроизводитель не согласится на столь оригинальный дизайн своей новой модели машины, хотя раньше встречались варианты в таком дизайне.

Уменьшать сопротивление ветра можно двумя методами:

  1. Изменить форму кузова настолько, чтобы поток воздуха максимально обтекал машину;
  2. Сделать автомобиль нешироким.

Во время движения машины на нее действует вертикальная сила. Она может иметь прижимный эффект, что положительно сказывается на сцеплении с дорогой. Если не увеличить давление на машину, образовавшийся вихрь будет обеспечивать отрыв транспорта от земли (этот эффект каждый производитель старается максимально устранить).

С другой стороны во время движения авто на него действует и третья сила – боковая. Эта область еще меньше поддается контролю, так как на нее влияет много непостоянных величин, например, боковой ветер при прямолинейном движении или на повороте. Силу этого фактора невозможно предугадать, поэтому инженеры не рискуют, и создают корпуса с шириной, которая позволяет пойти на определенный компромисс в коэффициенте Сх.

Чтобы определить, до какой степени можно учесть параметры вертикальных, фронтальных и боковых сил, ведущие производители автотранспорта создают специализированные лаборатории, в которых проводятся аэродинамические испытания. В зависимости от материальных возможностей, эта лаборатория может включать аэродинамическую трубу, в которой под большим потоком воздуха проверяется эффективность обтекаемости транспорта.

В идеале производители новых моделей авто стремятся либо довести свою продукцию до коэффициента в 0,18 (на сегодняшний день это идеал), либо превысить его. Но второе пока никому еще не удается, потому что невозможно устранить другие силы, воздействующие на машину.

Коэффициент аэродинамического сопротивления автомобиля — Википедия

Материал из Википедии — свободной энциклопедии

Коэффицие́нт аэродинами́ческого сопротивле́ния — безразмерная величина, равная отношение силы лобового сопротивления автомобиля F{\displaystyle F} к произведению скоростного напора Q{\displaystyle Q} на площадь миделевого сечения автомобиля S{\displaystyle S}. Обычно обозначается как Cx{\displaystyle C_{x}}:

Cx=FQ⋅S.{\displaystyle C_{x}={\frac {F}{Q\cdot S}}.}

Скоростной, или аэродинамический напор, имеет размерность давления (в СИ измеряется в паскалях) и определяется как:

Q=ρv22,{\displaystyle Q={\frac {\rho v^{2}}{2}},}
где v{\displaystyle v} — скорость, м/с;
ρ{\displaystyle \rho } — плотность воздуха, кг/м3.

Лобовое аэродинамическое сопротивление:

F=Cxρv22S.{\displaystyle F=C_{x}{\frac {\rho v^{2}}{2}}S.}

Cx{\displaystyle C_{x}} зависит только от формы автомобиля и числа Рейнольдса, при равенстве всех критериев подобия, в данном случае существенно число Рейнольдса, одинаков для всех геометрически подобных тел, независимо от их конкретных размеров. Cx{\displaystyle C_{x}} в широком диапазоне чисел Рейнольдса (Re), от ~1000 до ~105 приблизительно постоянно. При малых Re Cx{\displaystyle C_{x}} увеличивается из-за перехода обтекающего потока в ламинарное течение, для автомобиля такое Re соответствует скорости нескольким десяткам сантиметрам в секунду. При Re>105 наступает полное развитие турбулентности как на лобовой, так и на тыльной сторонах обтекаемого тела и Cx{\displaystyle C_{x}} снижается.

Чем меньше Cx{\displaystyle C_{x}}, тем меньше лобовое сопротивление движению автомобиля и меньше расход топлива при прочих равных условиях. Cx{\displaystyle C_{x}} современных легковых серийно выпускаемых автомобилей лежит в пределах от 0,2 до 0,35. У грузовых автомобилей и внедорожников, из-за плохо обтекаемого воздухом массивного кузова — до 0,5 и более.

Некоторые производители указывают в спецификациях эффективную площадь сопротивления автомобиля Seff{\displaystyle S_{eff}}:

Seff=Cx⋅S.{\displaystyle S_{eff}=C_{x}\cdot S.}

Эта величина равна площади тонкой плоской пластины, ориентированной перпендикулярно набегающему потоку и испытывающей равную силу сопротивления с автомобилем, движущемся с той же скоростью, так как Cx{\displaystyle C_{x}} тонкой пластины близок к 1. Эффективная площадь зависит не только от формы, но и от размеров автомобиля, точнее, от площади его миделева сечения. Эффективная площадь современных серийных составляет от 0,5 м

2 для легковых до 2 и более квадратных метров у внедорожников и грузовиков.

Коэффициент сопротивления определяется экспериментальным путём продувкой макетов автомобилей в аэродинамической трубе, либо расчётным путём с помощью компьютерного моделирования.

Мощность, затрачиваемая на перемещение тела с силой F{\displaystyle F} равна произведению этой силы на скорость v{\displaystyle v}:

Pa=F⋅v.{\displaystyle P_{a}=F\cdot v.}

Так ка сила аэродинамического сопротивления пропорциональна квадрату скорости, то часть мощности двигателя, идущей на преодоление сопротивления воздуху пропорциональна кубу скорости, т. е увеличение скорости в два раза требует увеличения мощности на преодоление сопротивления в восемь раз:

Pa=Cxρv32S=ρv32Seff.{\displaystyle P_{a}=C_{x}{\frac {\rho v^{3}}{2}}S={\frac {\rho v^{3}}{2}}S_{eff}.}
Пример

У автомобиля в летний день (плотность воздуха ~1,2 кг/м3), с эффективной площадью 1 м2, движущегося со скоростью 10 м/с (36 км/час) двигатель затрачивает на преодоление сопротивления воздуха около 600 Вт, а при движении со скоростью 30 м/с (108 км/час) уже ~16 кВт (~22 л. с.).

Некоторые примеры коэффициентов аэродинамического сопротивления современных автомобилей:

Серийно выпускаемые автомобили

  • Cx=0,29{\displaystyle C_{x}=0,29} — Peugeot 308, 2007

  • Cx=0,28{\displaystyle C_{x}=0,28} — Porsche 997, 2004

  • Cx=0,27{\displaystyle C_{x}=0,27} — Infiniti G35, 2002 (Cx=0,26{\displaystyle C_{x}=0,26} «aero package»)

  • Cx=0,26{\displaystyle C_{x}=0,26} — Lexus LS 430, 2001 (0,25 air suspension)

  • Cx=0,25{\displaystyle C_{x}=0,25} — Audi A2 1.2 TDI, 2001

Чем антикрыло отличается от спойлера?

Спойлер на переднем бампере изменяет направление набегающего воздушного потока.

Эти аэродинамические устройства используются для разных целей.

Антикрыло призвано создавать силу, прижимающую автомобиль к земле. В профиль оно похоже на перевернутое крыло самолета. То есть набегающий поток воздуха стремится не оторвать машину от дороги, а наоборот, сильнее “вдавить” ее в полотно. В результате улучшаются устойчивость и управляемость автомобиля. Но только на высоких скоростях. Если ехать медленнее 90-100 км/ч, антикрыло практически бесполезно.

Также для эффективной работы этого элемента необходимо, чтобы воздух обтекал его с обеих сторон – сверху и снизу. Поэтому антикрыло обычно устанавливается на специальных стойках отдельно от кузова.

Спойлер же лишь меняет направление течения воздушного потока. Например, отсекает его часть для охлаждения тормозов или для снижения завихрений за кормой. Подъемная сила при этом обычно не уменьшается, зато коэффициент аэродинамического сопротивления может упасть очень заметно. А это, в свою очередь, улучшает экономичность машины и повышает максимальную скорость.

В отличие от антикрыла спойлер порой имеет весьма замысловатую форму, но всегда крепится непосредственно к кузову. Частенько он даже изготавливается вместе с каким-либо кузовным элементом. Например, бампером.

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.

Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх)  — это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 м2  и коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.

Аэродинамическая труба

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

  • Формой кузова;
  • Трением потока о поверхности при обтекании;
  • Попаданием потока в подкапотное пространство и салон.

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.

Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий